Gay Lussacs' Law

It states that, the pressure of a given mass of a gas increases or decreases by 1/273.15 of its pressure at 0°C, for 1°C increase or decrease in temperature when the volume of the gas is constant.

Pressure at
$$t^{\circ}C = P_t = P_0 \left(1 + \frac{t}{273.15} \right) = P_0 \left(\frac{273.15 + t}{273.15} \right)$$

$$P_t = P_0 \times \frac{T}{T_0}$$
; $\therefore \frac{P_t}{T} = \frac{P_0}{T_0}$ $\therefore \frac{P}{T} = \text{constant}$

 \therefore $P \propto T$ when volume of the gas is constant; \therefore Gay Lussac's law can also be stated as that the pressure of a given mass of a gas is directly proportional to its absolute temperature when volume of the gas is constant.

Thus P-T graph in an isochoric process is a straight line passing through origin or $\frac{P}{T}$ versus P or T graph is a straight line parallel to P or T axis.

